

International Journal of Computer & Information Technologies (IJOCIT)
www.ijocit.ir & www.ijocit.org

ISSN = 2345-3877

Phoenix-S2:

A Low Latency Switch for NoC based on FSM and Locking Mechanism

Akram Reza1, Midia Reshadi2

Sama technical and vocational training college1, Department of Computer Engineering2

Islamic Azad University1,2
Karaj Branch1, Science and Research Branch2

Karaj1, Tehran2

 Iran1,2

(Email: ak.reza@hotmail.com)

Keywords: Network on chip; switch; Finite State Machine; buffering strategy.

1. Introduction

Network on Chip (NoC) is proposed as a new

design methodology [1-3]; to replace traditional

bus architectures and to provide higher

bandwidth, lower latency and scalable

communication infrastructure for modernsystems

on chip. NoC design imposes several challenges.

Elements of NoC must be fast; due to this

routing, switching, and links have to be simple

and efficient. On the other hand, area and power

limitations, scalability, reusability, and reliability

are, also, serious [4-6]. Switching and routing

techniques absolutely affect the switch structure.

So, it is an important constituent of NoC

architecture which has a straight influence on

many design parameters such as end to end delay,

packet latency, power consumption, and peak

performance [6 and 7].

Abstract: Disproportion between gate and wire delays on chip is aggravated by technology shrinking in the

deep submicron (DSM) domain. Thus, Network on Chip is proposed to address DSM problem. In this paper we

propose a low latency NoC switch based on Deterministic Finite State Machine and port locking mechanism

which is implemented by multiplexer. Routing and arbitration operations are done in only one clock. In addition,

switch area is reduced significantly in comparison to conventional NoC switches. Proposed Switch is described

in VHDL; validation and simulation are performed by ModelSim. Synthesis is executed by Leonardo Spectrum-

98 tool in ASIC and FPGA designs.

http://www.ijocit.ir/
http://www.ijocit.org/
mailto:ak.reza@hotmail.com

© 2014, IJOCIT All Rights Reserved Volume 2, Issue 03 Page 482

International Journal of Computer & Information Technologies (IJOCIT)

Corresponding Author: Akram Reza

August, 2014 Volume 2, Issue 3

From the other point of view, switches as a main

element of NoC consume around 58% of whole

NoC area [6]. In addition, practical results

indicate that buffers in switch dominate switch

area. Another parameter of switch design is a

latency, which affects on-chip network

performance. More or less in NoC switch, this

parameter is more restricted to arbitration and

routing logic depended on their policies.

 In this paper, we present structural switch

architecture which is suitable for NoC

architecture. A key aspect of proposed design is

applying Finite Sate Machine (FSM) [8].

Inasmuch as, FSM implementation of different

parts of switch makes our design compact and

fast [9]. The switch was described in VHDL.

Cycle-accurate simulation appropriately presents

state transitions, ports pipelining functionality,

and processing of port locking. Phoenix-s2

switch design is general and flexible in the terms

of using in various topology and engaging

different routing and arbitration policies. We

evaluate our design in area consumption and

delay standpoints. Results indicate that

arbitration and routing latency span only one

clock. Hence, we achieve low latency switch

design. Eventually we examine proposed switch

area with different port numbers and buffering

strategies.

This paper is organized as follows. First, in

section 2 we introduce Phoenix-s2 switch

architecture and related Finite State Machines.

Chip area and buffer analysis and synthesis

results are presented, in the section 3. Finally, we

conclude our paper in section 4.

OUT IN

IN OUT

O
U

T
IN

O
U

T
IN

IN

O
U
T

MUX

MUX

M
U

X

M
U
X

M
U

X

West N
o

rt
h

East

S
o

u
th

Local

Arbitration and

Routing

Controller

Sel-North-out

Sel-South-out

Sel-West-out

Sel-East-out

S
el
-L

oc
al
-o

ut

Request-internal-i

Dest_i

D
a

ta
-O

u
t-N

R
e

a
d

y
-to

-s
e

n
d

R
e

q
u

e
s
t-to

-s
e

n
d

D
a

ta
-In

-N

R
e

a
d

y
-to

-s
e

n
d

R
e

q
u

e
s
t-to

-s
e

n
d

Data-Out-W

Ready-to-send

Request-to-send

Data-In-W

Ready-to-send

Request-to-send

D
a

ta
-O

u
t-

S

R
e

a
d

y
-t

o
-s

e
n

d

R
e

q
u

e
s
t-

to
-s

e
n

d

D
a

ta
-I

n
-S

R
e

a
d

y
-t

o
-s

e
n

d

R
e

q
u

e
s
t-

to
-s

e
n

d

Data-Out-E

Ready-to-send

Request-to-send

Data-In-E

Ready-to-send

Request-to-send

D
ata-O

ut-L

R
eady-to-send

R
equest-to-send

D
ata-In-L

R
eady-to-send

R
equest-to-send

Figure 1: Phoenix-s2 switch structure

© 2014, IJOCIT All Rights Reserved Volume 2, Issue 03 Page 483

International Journal of Computer & Information Technologies (IJOCIT)

Corresponding Author: Akram Reza

August, 2014 Volume 2, Issue 3

2. Switch Architecture

In the current paper we consider mesh topology

and packet switched network, but the prototype

switch can be used for any topology which needs

a five ports switch. Also, switch can be deployed

for different port numbers. As, we deploy switch

with three and four ports. Prototype switch has

five ports as N (North), W (west), S (south), E

(east), and L (local), (See Figure 1).

Local port connects to core. The switch under

test implements deterministic routing and

wormhole switching. However, any routing

algorithms can be utilized. Due to the fact that,

routing logic is absolutely independent from

other parts of switch architecture, especially

arbitration logic and input ports, (See Table (1)).

 Although, flits of transmitted packets are

firmly one byte, due to wormhole switching;

Numbers of data flits in every packet are variable,

due to achieve high compatibility to most NoC

topologies, applications, and switching

techniques through network. Therefore, packet is

composed of three fields which are shown in

Figure 2:

 First flit (8 bits): Destination Address

 Second flit (8 bits): Numbers of data Flits

 Payloads: Flits of Data

Table 1: Arbitration pseudo code

IF request_internal_north='1' THEN

 dest_north is determined by routing algorithm

 request_internal_north<='0';

ELSIF request_internal_west='1' THEN

 dest_west is determined by routing algorithm

 request_internal_west<='0';

ELSIF request_internal_south='1' THEN

 dest_south is determined by routing algorithm

 request_internal_south<='0';

ELSIF request_internal_east='1' THEN

 dest_east is determined by routing algorithm

 request_internal_east<='0';

ELSIF request_internal_global='1' THEN

 dest_gloabl is determined by routing algorithm

 request_internal_global<='0';

END IF;

We employ both input buffering, and, also,

input/output buffering strategy. Finally selection

between these two strategies is completely

dependent on specified applications which are

transmitted via proposed switches. Synthesis

results will be discussed in the terms of both area

and timing in section 3. Hence, in input buffering

strategy, every port has two buffers. The first one

receives data from data_in signal and the second

one forwards data to data_out signal. Each

buffer has eight columns which are adapted to

flits size. Although, studies indicate that six rows

are proper for most applications [6]; Purposely,

in presented switch, row numbers are three. This

is chosen due to the pipeline operation among

© 2014, IJOCIT All Rights Reserved Volume 2, Issue 03 Page 484

International Journal of Computer & Information Technologies (IJOCIT)

Corresponding Author: Akram Reza

August, 2014 Volume 2, Issue 3

three levels of transmission, low latency

arbitration process, and buffer area consumption

which is very critical. Although simulation

shows us more than three rows are not optimized,

number of buffer rows can be selected directly

by considering specified applications constraints

and topology limitations.

 front_in_west

 rear_in_west

 front_out_east

 rear_out_east

Header

Number of flits

Header

Number of flits

Internal transmission

1
st
 data flit

External receive External send

H # A/R 1
st

 2
nd

 3
rd

 4
th

 5
th

H # 1
st

2
nd

 3
rd

 4
th

 5
th

H # 1
st

2
nd

 3
rd

 4
th

 5
th

6
th

 7
th

 8
th

6
th

 7
th

 8
th

6
th

 7
th

 8
th

External Receive

Internal Transmission

External Send

Header Data flit # Data flits payload
Packet format

Figure 2: Packet forwarding via pipeline process in the switch is shown

Each flit (8 phit) in a packet is stored just in one

clock. Fundamentally, we do not consider link

latency in this design level, due to hierarchical

design. Figure 2 presents the data transmission

through the NoC switch and also outside it.

Correspondingly, packets, flit by flit, are fed into

input buffer via data_in signal. Then, they are

dispatched out to match output port, based on

arbitration process, routing process, locking, and

internal transmission; eventually, they are sent

out to data_out signal. Consequently, three

transmission stages are required. First of all,

external received from previous switch or core,

secondary, internal transmission in switch, and

finally external sending to next switch or core.

3. Finite State Machine in switch

structure

The data transmission is controlled by two finite

state machines: Receive, and Send. These

machines work concurrently with each other per

clock to perform punctual operation, to construct

switch more structural, and to increase visibility

of the switch behavior in the peak work load.

Remember, when all machines are in init state, it

shows ports preparation. Hence we do not need

to check lock signals to enter current FSM.

© 2014, IJOCIT All Rights Reserved Volume 2, Issue 03 Page 482

International Journal of Computer & Information Technologies (IJOCIT)

Corresponding Author: Akram Reza

August, 2014 Volume 2, Issue 3

Receive machine in port (i) is commenced by an

external request from neighbor switch which

indicates neighbor switch has a packet for

transmission (see Figure 3).

S0Int
request from

a neighbor switch/core

No request from

a neighbor switch/core

S1
Ready to receive

Current_state_receive_i as input FSM

S2

S3

Enable Ready to a neighbor switch

Enable Request to arbitration

Receiving 1
st
 flit

as destination address

Not ready to receive

1
st
 flit of packet

Not ready to receive

2
nd

 flit of packet

 Ready to receive

Until arbitration

does not determine

the destination port

If output port is free ,

Select Signal of output port is assigned by input port

Enable Ready to a neighbor switch

S4

Output port mux

selection is

assigned correctly

Until counter is

become zero

Receiving 2
nd

 flit as number of flit

Counter setting by 2
nd

 flit

Disable Ready to a neighbor switch to stop receiving

arbitration determines

the destination port

Externally receive is resumed from data_in

And internally transmission is begun

Counter is decreased by every row tranmission

Specified output port is locked by i input port

Counter is zero and

packet is totally received

Until output port

is busy

S1S0Int

Send a request signal to neighbor switch/core

Current_state_out_j as output port FSM

External send is done to next switch

Output port Lock signal is disabled

And FSM is initiaized

By output port

selection signal activation

If ready signal is activated

by next switch

If ready signal is not

activated by next switch Until mux selection signal is disable and

buffer pointers stop at the same place

FSM stays in this stat

Figure 3: Receive Finite State Machine for (i) input port and Send Finite State Machine for (j) output port.

Therefore, receive machine is triggered to S0 and

replies to neighbor switch its preparation. Then it

is triggered to S1 sending an internal request to

arbitration and receiving first flit of the packet as

destination address. Precisely, just at this time,

arbitration realizes which input port is active and

by its destination address, it can determine the

proper output port. The receive machine in port

(i) goes to S2 to receive second flit as a number

© 2014, IJOCIT All Rights Reserved Volume 2, Issue 03 Page 483

International Journal of Computer & Information Technologies (IJOCIT)

Corresponding Author: Akram Reza

August, 2014 Volume 2, Issue 3

of data flits, and, also, counter is initialized and

ready signal is disabled to cease external receive

from neighbor switch for a clock. At S3,

arbitration determines the output port (j) just in

one clock and sends it to “receive” machine. In

this state if output is free, depending on input,

output multiplexer “select” signal is assigned.

Therefore, output is locked. Also, ready signal to

neighbor switch is enabled to show that input (i)

is ready and specified output is decided.Then

input machine is triggered to S4. Hence, external

receive from neighbor switch is resumed and

internal transmission between in and out buffers

is commenced. Counter in every input is

decreased by every phit transmission. Therefore,

machine stays in S4 until input counter reaches

to zero.

Simultaneously, send machine in output port is

commenced by initializing multiplexer select

signal with proper input port number, (See

Figure 3). Hence, output (j), in S0, sends a

request to next neighbor switch; as a result,

external handshake flow control is begun. By

receiving its ready, in S1 state, external send is

commenced and it is continued until selection

signal is initialized by input port which means

the termination of process.

4. Experimental Results

The Phoenix-s2 NoC switch is described in

VHDL. ModelSim simulation tool is used to

validate proposed switch functionality Moreover,

the switch area consumption was estimated by

varying two parameters: number of port and

buffering strategy. The Leonardo Spectrum-98

tool was used to synthesize the Phoenix switch in

two different technologies: Xilinx Virtex FPGAs

and XCLo5U ASIC. Synthesis was conducted

with maximum area and delay. We deployed

three rows in every buffer, because in simulation

we realized that more than three is not optimized

in our switch structure. As you see in both table

2 and table 3, we synthesized proposed switch

with (in) and (in/out) buffering strategies. Since,

proposed switch can be utilized in any topology

that may have different applications, these two

© 2014, IJOCIT All Rights Reserved Volume 2, Issue 03 Page 484

International Journal of Computer & Information Technologies (IJOCIT)

Corresponding Author: Akram Reza

August, 2014 Volume 2, Issue 3

strategies can be used depend on specified

applications. Phoenix-s2 in comparison to

conventional switches is more optimized in area

and delay.

Table 2: Phoenix switch synthesis results for (In/Out buffering) strategy for different port numbers

 Number of Ports

Parameters
3 ports 4 ports 5 ports

ASIC clk with area optimization 133.1MHz 103.6 MHz 24.4 MHz

ASIC gate number with area optimization 6384.0 10590.3 17020.9

ASIC clk with delay optimization 181.5 MHz 147.6 MHz 63.3 MHz

ASIC gate number with delay optimization 8612.3 14386.0 26168.8

FPGA clk with area optimization 22.8 MHz 16.4 MHz 4.4 MHz

FPGA LUT with area optimization 531.0 1033 1630.0

FPGA clk with delay optimization 29.6 MHz 20.5 MHz 6.0 MHz

FPGA LUT with delay optimization 671.0 1150 1698

Table 3: Phoenix switch synthesis results for (In buffering) strategy for different port numbers

 Number of Ports

Parameters
3 ports 4 ports 5 ports

ASIC clk with area optimization 177.3 MHz 101.6 MHz 29.5MHz

ASIC gate number with area optimization 2389.6 6503.0 9439.1

ASIC clk with delay optimization 277.8 MHz 147.0 MHz 65.4 MHz

ASIC gate number with delay optimization 3686.8 11206.4 17611.7

FPGA clk with area optimization 42.6 MHz 14.5 MHz 4.4 MHz

FPGA LUT with area optimization 152 659.0 1032.0

FPGA clk with delay optimization 44.5 MHz 21.5 MHz 6.6 MHz

FPGA LUT with delay optimization 162.0 789 1264.0

5. Conclusion

In this paper we present a low latency,

parameterizable, and structural switch

architecture suitable for on-chip networks, based

on Finite state machine. Phoenix-s2 switch can

be used for any topology which needs five ports

switch. Also configuration concept of prototype

switch can be deployed for different port

numbers and various routing and arbitration

policies depends on application and topology of

on chip network architecture. In order to achieve

a structural design, we use finite state machine

concept. The prototype switch is presented for

mesh topology with wormhole switching

mechanism. The evaluation results show that the

routing and arbitration are performed only in one

clock. We describe the structure of switch based

on two FSM: receive and send. In addition,

proposed switch is described in VHDL and

simulated with ModelSim to validate switch

functionality. We also synthesize switch in the

term of number of port and buffering strategies.

Results show that, proposed switch is efficient in

© 2014, IJOCIT All Rights Reserved Volume 2, Issue 03 Page 485

International Journal of Computer & Information Technologies (IJOCIT)

Corresponding Author: Akram Reza

August, 2014 Volume 2, Issue 3

area and delay in comparison to conventional

NoC switches. For future works we are planning

to analyzing different arbitration mechanisms in

switch.

References

[1] L. Benini, G. De Micheli, “Networks on

chips: a new SoC paradigm,” IEEE Computer,

vol. 35, no. 1, pp. 70–78, 2002.

[2] W. J. Dally, B. Towles, “Route Packets, Not

Wires: On-Chip Interconnection Networks,”

Proc. 38th Design Automation Conference

(DAC), pp. 684- 689, June, 2001.

[3] A. Hemani, A. Jantsch, S. Kumar, A. Postula,

J. Oberg, M. Millberg, D. Lindqvist, “Network

on a chip: an architecture for billion transistor

era”, Proc. IEEE NorChip Conference,

November, 2000.

[4] S. Kumar, A. Jantsch, J. P. Soininen, M.

Forsell, M. Millberg, J. Oberg, K. Tiensyrja, A.

Hemani, “A network on chip architecture and

design methodology,” Proc. ISVLSI’02,

Pittsburgh, USA, pp. 105-112, April, 2002.

[5] L. Benini, G. De Micheli, Networks on

Chips: Technology and Tools, Morgan

Kaufmann, San Francisco, CA, 2006.

[6] F. Moraes, N. Calazans, A. Mello, L. MÖller,

L. Ost, “HERMES: an infrastructure for low

area overhead packet-switching networks on

chip,” INTEGRATION, the VLSI journal, Vol. 38,

pp. 69–93, 2004.

[7] M. Millberg, E. Nilsson, R. Thid, S. Kumar,

A. Jantsch, “The Nostrum backbone - a

communication protocol stack for networks on

chip,” Proc VLSI Design Conference, Mumbai,

India, January, 2004.

[8] J. Hopcroft, J. Ullman, Introduction to

Automata Theory, Languages and Computation,

Addison-Wesley, june, 2001.

[9] J. Duato, S. Yalamanchili, L. Ni,

Interconnection Networks: An Engineering

Approach, Morgan Kaufmann, Los Altos, CA,

2002.

[10] Model Technology, ModelSim Foreign

Language Interface, Version 5.5e, 2001.

